ProgramMaster Logo
Conference Tools for 2016 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2016 TMS Annual Meeting & Exhibition
Symposium Computational Materials Discovery and Optimization: From 2D to Bulk Materials
Presentation Title Modeling the Hydroforming of a Large Grain Niobium Tube
Author(s) Aboozar Mapar, Thomas R. Bieler, Farhang Pourboghrat
On-Site Speaker (Planned) Aboozar Mapar
Abstract Scope Currently most of Niobium (Nb) cavities are manufactured from fine grain Nb sheets. As-cast ingots go through a series of steps including forging, milling, rolling, and intermediate annealing, before they are deep-drawn into a half-cell shape and subsequently electron beam welded to make a full cavity. Tube hydroforming, a manufacturing technique where a tube is deformed into a die using a pressurized fluid, is an alternative to the current costly manufacturing process. A whole cavity can be made from a tube using tube hydroforming. This study focuses on deformation of large grain Nb tubes during hydroforming. The crystal orientation of the grains is recorded. The tube is marked with a circle-grid which is used to measure the strain after deformation. The deformation of the tube is modeled with crystal plasticity finite element. The results of the simulation and experiments are compared.
Proceedings Inclusion? Planned: A print-only volume


A Differential-Exponential Hardening Model for Crystal Plasticity Modeling of Single Crystals
A Fast Algorithm for the Discovery of Optimal Nickel-based Superalloys
A General-Purpose Toolkit for Predicting the Properties of Materials using Machine Learning
A Machine Learning Approach to Bulk Property Prediction for the Laser Assisted Cold Spray Process
Applying Graph Kernels to the Transgranular Network for Microstructure Data Mining
Atomistic Modeling of Structure-Property Relationships in Grain Boundaries
Combined DFT, MD and Hybrid MD/FEM Simulations to Investigate Realistic Mechanical Deformations during Nanoindentation
Computational Discovery of New 2D and 3D Topological Materials
Computational Discovery of Novel Magnetic 2D Materials
Computational Discovery of Novel Single-Layer Group-IV Oxides with an Evolutionary Algorithm
Computational Exploration of Rare-earth Zirconate Pyrochlores for Thermal Barrier Coatings: Accurate Prediction of Thermal Conductivities and Thermal Expansion Coefficients from First-principles Calculations
Developing Physically-based Three Dimensional Microstructures: Bridging Phase Field and Crystal Plasticity Models
Effect of Charge on Point Defect Size Misfits from Ab Initio: Aliovalently Doped SrTiO3
Electronic Structures of Ferromagnetic Fe1-xTMxPt Alloys (TM = Mn, Fe, Co, Ni, Cu)
Exploring the Structure-composition Design Space in Multi-component Alloy Systems Using Nature Inspired Optimization Algorithms
Fatigue Crack Growth Modeling and Microstructural Mechanisms in Engine Materials under Hot Compressive Dwell Conditions
First Principles Investigation On TiAl3 Alloys Substitutively Doped With Si
H-1: A Theoretical Study on the Origin of Mg-based LPSO Structures
H-2: First Principle Study of Nonlinear Elastic Mechanical Responses of Two-dimensional Stanene
High-Throughput Screening of Substrates for Synthesis and Functionalization of Two-Dimensional Materials
Hydrogen-induced Core Structures Change of Screw and Edge Dislocations in Tungsten
Lithiation Kinetics of Crystalline Silicon Nanowires Regulated by Native Oxide Layer: A Molecular Dynamics Simulation Using ReaxFF.
Machine Learning in Chemical Space
Microstructural Evolution of High Temperature Ni-Cr ODS Alloy: Genetic Algorithm Approach
Modeling the Hydroforming of a Large Grain Niobium Tube
Monte Carlo Simulation of Two-phase Film Growth on a Patterned Substrate
Multi Scale Modeling of Deformation Behavior in Near Beta Ti-5553 Alloy
Prediction of Entropy Stabilized Incommensurate Phases in the System MoS_2-MoTe_2
Proving the Exact Ground State of a Generalized Ising Model by Convex Optimization and MAX-SAT
ReaxFF Force Field Development and Simulations of Two Classes of 2-Dimensional Structures: MoS2 and MXenes
Stability of Combined Depositions of Graphene and Gallium Nitride on Silicon Carbide: Interfacial Energies and Phonons
Three-Dimensional Simulation of Intercalation-Induced Stress in LiCoO2 Cathode Reconstructed by Focused Ion Beam Tomography
Turbostratically Disordered Compounds as a Template for Computational Materials Discovery

Questions about ProgramMaster? Contact