ProgramMaster Logo
Conference Tools for 2017 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2017 TMS Annual Meeting & Exhibition
Symposium Environmentally Assisted Cracking: Theory and Practice
Presentation Title Role of Hydrogen on Metal Plasticity: An Ab-Initio Study
Author(s) Pulkit Garg, Ilaksh Adlakha, Kiran Solanki
On-Site Speaker (Planned) Pulkit Garg
Abstract Scope Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and chemical properties of several intrinsically ductile metals. Consequently, understanding the mechanisms behind HE has been of particular interest in both experimental and modeling research. Discrepancies between experimental observations and modeling results have led to various proposals for HE mechanisms. Therefore, to gain insights into HE mechanisms, we aim to examine the effect of hydrogen on the critical resolved shear stress required for dislocation nucleation across a wide range of metals (Fe, Nb, Ta, Ni, Al and Ti) using first principle calculations. The increasing concentration of hydrogen was found to consistently decrease the stress required for dislocation nucleation for all the metals. However, the large decrease was observed for Fe closely followed by other BCC metals. Finally, the quantum charge transfer analysis was found to provide insights into underlying mechanism responsible for the enhanced dislocation nucleation.
Proceedings Inclusion? Planned: Supplemental Proceedings volume


3D Microstructural and Electrochemical Characterization of Galvanic Corrosion in Al7075-T651/316 Stainless Steel Couples
Assessing the Fracture Strength of Geological and Related Materials via an Atomistically Based J-integral
Atomic Insights on Hydrogen Embrittlement in Iron
Challenges and Recent Progress in High Fluence Irradiation Assisted Stress Corrosion Cracking
Consequence of Hydrogen Desorption on Local Mechanical Properties and the Fracture Mechanisms of a Martensitic Steel
Correlating Grain Boundary Microchemistry in Austenitic Stainless Steels with Their Susceptibility to Irradiation-assisted Stress Corrosion Cracking
Corrosion of Nickel-Titanium, C110, and Al6061 in Gallium-based Liquid Metal Alloys
Crack Growth Prediction for Stress Corrosion Cracking and Corrosion Fatigue of Irradiated Stainless Steels
Design of Nickel Alloys and Superalloys with a High Resistance to Hydrogen Embrittlement
Diffusion, Trapping Mechanisms and Some Implications on Local Approach of Fracture in Martensitic Steel
Direct Observations of Corrosion Cracking in a TEM
Effect of Chemical Composition on Embrittlement of High Manganese TWIP Steel
Effect of Mechanical Stresses on the Pitting Corrosion Behavior of an Al7075 Alloy
Effects of Internal and External Hydrogen Environments on Crack Growth in an Iron Based Superalloy
Effects of Trace Impurities on the Strength and Fracture of Hydrogen-Charged Ni-201
Environmentally Assisted Cracking of Commercial Carbon Steels and Corrosion Resistant Alloys
Environmentally Assisted Stress Corrosion Cracking of 5xxx Al Alloys in Atmospheric Environments
Factors Causing Hydrogen Embrittlement of Cold-drawn Pearlitic Steel Fractured under Elastic/Plastic Region
Factors Governing Hydrogen-Assisted Intergranular Cracking: Ni as a Model System
Fundamental Mechanisms of Mitigating Stress Corrosion Cracking of Austenitic Stainless Steels by Laser Shock Peening
Hydrogen-Induced Fracture: From Fundamentals to Prognosis
Hydrogen Embrittlement and Hydrogen-enhanced Strain-induced Vacancies in α-iron
Hydrogen Embrittlement and Stress Corrosion Cracking as Examples of the Chemomechanics of Solids
Hydrogen Embrittlement Mediated by Reaction between Dislocation and Grain Boundary in Iron
Intergranular Hydrogen Embrittlement: Hydrogen Diffusion in Nickel Singles Crystals and Bi-crystals
L-65: High Pressure Hydrogen Embrittlement of Fe-30Mn-0.2C-(1.5)Al High-Mn Steel
L-66: The Characterization of Grain Boundary Precipitates in Aluminum-Magnesium Alloys at Mildly Elevated Temperatures
L-67: The Influence of Global Slip Behavior on Hydrogen Environment-Assisted Cracking in Monel K-500
Linking Hydrogen-enhanced Plasticity to Hydrogen-induced Failure Mode
Macro- and Micro-scale Study of Hydrogen Susceptibility of Advanced High Strength Sheet Steels
Modeling Corrosion Damage and Crack Propagation Using Novel Meshless Peridynamics Framework
Peridynamic Modeling of Autonomous Lacy Cover Formation and of SCC
Quantification of Hydrogen-Metal Interactions in Engineering Alloys in Confined Spaces: Challenges and Opportunities
Relationships between the Galvanic Driving Force and Strain Energy Density Accumulation
Role of Hydrogen on Metal Plasticity: An Ab-Initio Study
Sensitization Effects on Environmentally Assisted Cracking of Al-Mg Alloys
Sensitization Effects on Tensile Behavior in 5XXX Series Aluminum Alloys: Macro- and Mesoscale Observations
Stacking Fault Energy Based Alloy Identification for Hydrogen Compatibility
Strain Rate Effects on the Stress Corrosion Cracking Behavior of Ni and Co Based Superalloys for Marine Applications
Stress-corrosion Cracking in Ti-8Al-1Mo-1V
Structural and Mechanical Characterization of Corroded Region in 7075 Aluminum (Al) Alloy
The Effect of Composition, Temper, and Crack Orientation on the Stress Corrosion Cracking Behavior of Al-Mg Alloys
The Effect of Microstructural Variation on Hydrogen Environment-Assisted Cracking Susceptibility of Monel K-500
The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels
The Importance of Radiation and Deformation in Environmentally Assisted Cracking
The Role of Hydrogen-enhanced Strain-induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

Questions about ProgramMaster? Contact