ProgramMaster Logo
Conference Tools for 2018 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2018 TMS Annual Meeting & Exhibition
Symposium Fracture: 65 Years after the Weibull Distribution and the Williams Singularity
Presentation Title Re-tooling the Engineering Predictive Practices for Durability and Damage Tolerance
Author(s) Robert Piascik, Norman Knight
On-Site Speaker (Planned) Robert Piascik
Abstract Scope With less emphasis on testing and increased emphasis on computational durability and damage tolerance (D&DT) methods as the standard practice, it is paramount that capabilities of these methods are understood, the methods are used within their technical limits, and validation by well-designed tests confirms understanding. This presentation discusses growing vulnerabilities of existing D&DT methods in terms of three important local parameters: 1. Local length scales (structural and material) within the micromechanics regime. 2. Local environments that influence D&DT behavior. 3. Local material behavior (i.e., anisotropy, properties, damage mechanisms, etc.), that are not thoroughly considered. The lack of understanding of any of the local parameters listed above have led to incomplete and erroneous estimates of D&DT performance. Discussions will include several vulnerable engineering practices related to estimating the D&DT of fracture-critical components and why D&DT method vulnerabilities will rapidly increase with new weight saving designs, advanced materials, and unique fabrication processes.
Proceedings Inclusion? Planned: Supplemental Proceedings volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Data-driven Approach to Predict Microstructurally Small Crack Evolution
A Probability Model for Stress Rupture Failure of Carbon Composites, Incorporating Weibull Fiber Strength Statistics, Local Fiber Load Sharing, and Matrix Creep
An Integrity Basis of Fracture Challenges
Applicability of Weibull Statistics for Micro- and Nano-scale Silicon Components
Comparison of Methods to Find the Weibull Stress Parameters
Composite Overwrapped Pressure Vessel (COPV) Life Test
Computational Procedure for Designing New Gen 3 Steels with High Formability and Ductile Fracture Resistance
Forward Propagation of Random Microstructural Features for Reliability Estimates of Engineering Structures
Fracture Behavior of High Performance Sheet Steel
Fracture Toughness of Silicon by Variable Temperature Micropillar Splitting
Grain and Sub-grain Level Strains ahead of an Evolving Fatigue Short Crack as Measured by X-ray Techniques
High Temperature Cracking Damage of Calcium Aluminate Cements
K-dominance of Atomistic Cracks
Limitations and Applicability of LEFM to Spalling Fracture in Single Crystal Semiconductors
NASA's Plan for Development and Transition of Computational Materials-based Capabilities for Next-generation Durability / Damage Tolerance and Additive Manufacturing
On the Experimental Evaluation of the Fracture Toughness of Shape Memory Alloys
On the Prediction of Failure in 6016 Aluminum Alloy Sheet by GISSMO Damage Model
Physical and Computational Aspects of Engineering Damage Mechanics
Predicting Joint Strength: Evaluating Interface Corner Stress Intensity Factor and Cohesive Zone Modeling Approaches
Re-tooling the Engineering Predictive Practices for Durability and Damage Tolerance
Singularities of Dynamic Cracks
Size, Temperature, Environmental Effects on Brittle Fracture (BDT)
The Complexity of Ductile Fracture
The Effect of Loading Rate on Fracture Toughness of Low Ductility Materials
Toughness, Roughness and Crack Path Engineering for Improved Ductile Fracture Resistance
Trends in Microstructure-sensitive Computational Approaches to Fatigue Cracking
Use of Weibull Distribution to Characterize High Performance Fibers
Using R-curves to Predict Fatigue Behavior in Crack Bridging Toughened Ceramics
Void Initiation during Ductile Rupture of Pure Metals
Weibull Analysis of High Strength Ni- and Fe-based Bulk Metallic Glasses

Questions about ProgramMaster? Contact programming@programmaster.org