ProgramMaster Logo
Conference Tools for 2020 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2020 TMS Annual Meeting & Exhibition
Symposium Purveyors of Processing Science and ICME: A SMD Symposium to Honor the Many Contributions of Taylan Altan, Wei Tsu Wu, Soo-Ik Oh, and Lee Semiatin
Presentation Title Towards Rapid Throughout Measurement of Grain Boundary Properties
Author(s) Jin Zhang, Peter W. Voorhees, Henning Poulsen
On-Site Speaker (Planned) Peter W. Voorhees
Abstract Scope The materials design process rests on a foundation of data. Unfortunately, there are many parameters that are central to a design effort and are challenging to measure, such as grain boundary energies and mobilities. A rapid throughput method is developed to measure grain boundary properties by comparing the evolution of experimentally determined 3D grain structures to that derived from phase field simulations. Grain evolution in pure iron is determined in three dimensions and as a function of time using diffraction contrast tomography. Using a time step from these data as an initial condition in a phase-field simulation, the computed grain structure is compared to that measured experimentally at a later time. An optimization technique is then used to find the reduced grain boundary mobilities of many thousands of grains that yields the best match of the simulated microstructure. The results of this approach will be discussed.
Proceedings Inclusion? Planned: Supplemental Proceedings volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Road Map of Four Decade Journey to Modeling Thermo-mechanical Processes and Microstructure Evolution
An (incomplete) ICME Framework for Modeling Additive Manufacturing
Annealing Twins in Wrought Polycrystalline Superalloys
Application of the CALPHAD Method in the Framework of ICME
Austenite Transformation Behavior during Tensile Deformation of Quenched and Partitioned Steels
Development and Calibration of Numerical Meso-scale Models of Microstructure Evolution for Concurrent Recovery, Recrystallization, and Grain Growth with Zener Pinning
Development and Optimization of a Novel SPPARKS Recrystallization Model for AM IN718
Directional Recrystallization Processing
Engineered Residual Stress Optimization and Utilization
Enhancing the Properties of Ni-based Superalloys via Mesoscale Engineering
Genomic Materials Design: Science-based Engineering
Heterogeneous Deformation during Forming of Pure Niobium and its Influence on Superconducting Radio Frequency Cavity Performance
Hierarchical Multiscale Modeling of Microtextured Regions in Ti-6242 during Alpha/beta Processing
Integrated Approaches to Alloy Industrialization Using Numerical Simulation and Physical Modeling
Manipulation of Microstructure and Microstructural Gradients through Dehydrogenation of Hydrogen-sintered Ti-6Al-4V
Martensitic Variant Selection Under Applied Stress: A New Approach Applied to the β→𝛼 Transformation in Titanium
Mesoscale Simulations of Processing-microstructure Linkages during Additive Manufacturing
Metallic Alloy Microstructure Selection during Rapid Solidification and Additive Manufacturing
Microstructure Control of Nickel based Superalloy Forgings: a Focus onto Post-dynamic Evolutions
Microstructure Underpins Processing
Modeling Beta Phase Texture Evolution during Alpha+Beta Forging to Understand Precursors to Coarse (“Abnormal”) Grain Formation
Modeling of the Solidification Structure Evolution of Ti-6Al-4V Processed via Electron Beam Powder Bed Fusion
Modeling Pore Closure in Titanium Alloys
On the Mechanical Behavior of Keyhole-free Friction Stir Welded Copper-Aluminum Spot Joints
Optimizing Metals Additive Manufacturing
Processing Heterostructured Materials for Superior Mechanical Properties
Pushing the Performance Limits of Metallic Alloys through Severe Plastic Deformation Processing
Regulating Plastic Deformation by Structural Phase Transformations and Cice Vesa for Unprecedented Mechanical Properties
Role of Thermo-mechanical-chemical Transients: Relevance to Welding and Additive Manufacturing of Structural Metals
The Challenges of Refractory Alloy Processing: A Case Study in a Refractory Complex Concentrated Alloy
The Effects of Alpha-beta Interaction on the Texture Development of Zr and Ti Alloys during Hot Working
The Evolution of Abnormal Grains Structures during Beta Annealing of Ti-64 Wrought Products
The Operation of a Research Scale Esr Furnace and its Impact on Trace Elements
The Role of Plastic Rotation in the Breakdown of Colony Microstructures in Two Phase Titanium Alloys
Towards Rapid Throughout Measurement of Grain Boundary Properties
Transformations, Recrystallization, Microtexture and Plasticity in Titanium Alloys
Zoning Thermomechanical Process History Data Using Unsupervised Machine Learning

Questions about ProgramMaster? Contact programming@programmaster.org