ProgramMaster Logo
Conference Tools for 2016 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2016 TMS Annual Meeting & Exhibition
Symposium Computational Materials Engineering for Nuclear Reactor Applications
Presentation Title Thermodynamic Modeling of Complex Oxide Phases in U-M-O Systems where M = Ce, Nd, Pr, La, Y, Gd, and Th
Author(s) Jacob McMurray, Dongwon Shin, Stewart Voit, Robbie Brese, Ben Slone, Suengmin Lee, Theodore Besmann
On-Site Speaker (Planned) Jacob McMurray
Abstract Scope Application of thermodynamics is an important component of physics based fuel performance modeling efforts since it provides fundamental inputs, such as chemical potentials and thermal properties, for phase transformation, microstructure evolution, and continuum transport simulations. Using the CALPHAD (Calculations of Phase Diagrams) method, the thermodynamics of key U-M-O systems are assessed where M represents high yield fission products Ce, Pr, La, Y, and Nd or interesting additions like Gd and Th. Equilibrium oxygen pressures over U1-yMyO2x were obtained from thermogravimetric measurements and used together with those reported in the literature along with phase relation and other experimentally determined thermodynamic values to fit adjustable parameters of CALPHAD models. These assessments provide a thermodynamic description of each subsystem that can be combined for higher order multi-component representations for better understanding chemical behavior of fuel with burn-up. Research supported by the US Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program.
Proceedings Inclusion? Planned: A print-only volume


3D Phase Field Simulation of Grain Growth in Porous UO2
An Overview of the Fuel, Materials and Chemistry Focus Area within the CASL Energy Innovation Hub
Analysis of the Candidate Alternative Fuel Cladding FeCrAl during LWR Operation Using the BISON-CASL Fuel Performance Code
Cluster Dynamics Modeling of Damage Evolution in Iron Chrome Alloys
Cluster Dynamics Modeling of Extended Defects in Irradiated UO2 with Off-stoichiometry Considerations
Computational Materials Engineering for Reactor Applications Using the Open-Source MOOSE Framework
Computer Modeling of Hydrogen and Oxygen Transport during Zirconium Corrosion
Coupled Micro/Meso/Macro Modeling of the Crud Source Term in Light Water Reactors
Coupled PWR Oxidation Modeling with the HOGNOSE Code
Coupling Radiation Damage from Binary Collision Monte Carlo to Phase Field Microstructure Evolution
Development and Application of Accident Tolerant Fuel Models
Development of the NEAMS Fuels Product Line
Enhanced Helium Clustering Process in Iron
First Principles Neural Networks and Diffusion in Nuclear Structural Materials
Long-Term Defect Evolution in Iron-based Alloys from SEAKMC Simulations
Microstructure-explicit Rate Theory Modeling of Point Defect Transport during Irradiation Damage
Molecular Dynamics Simulations on Homogeneous Hydride Nucleation in Alpha-Zr
Multi-scale Simulation of Fission Gas Diffusion in UO2 Nuclear Fuel
Multiscale Modeling of the Coherency Loss of Hydrides in αZr
One Dimensional Migration and Gas Bubble Superlattice Formation in UMo Metal Fuels--a Phase-field Model
Optimization of Self-interstitial Clusters in 3C-SiC Using Generic Algorithm
PCI Analysis of a Commercial PWR using Bison-CASL Fuel Performance Code
Phase-field modeling of ODS particle behavior in the metallic system.
Predicting the Radiation Dependent Flow Stress and Cleavage Failure in RPV steels using Crystal Plasticity
Role of Stoichiometry on Ordering in Ni-Cr Alloys
Silicon and Vacancy Diffusion near an Edge Dislocation in Nickel under Irradiation
Stochastic Modeling of the Corrosion of Zirconium and its Alloys: Theory and Application to Autoclave Corrosion
Structural Integrity Analysis of Reactor Pressure Vessel with Lamellar Flaws in Grizzly
Thermo-Mechanical Analysis of SiC/SiC Composite Cladding for LWR Application.
Thermodynamic Modeling of Complex Oxide Phases in U-M-O Systems where M = Ce, Nd, Pr, La, Y, Gd, and Th
Validation of BISON Calculation of Hydrogen Distribution by Comparison to Experiment
Z-10: Texture Measurement and Prediction of Rolled α-uranium Foil
Z-11: Using Phase Field Modelling to Investigate the Bubble Lattice Phenomenon in Nuclear Fission Materials
Z-1: A Spatially Resolved Stochastic Cluster Dynamics Approach for Simulating Radiation Damage Accumulation in α-Fe
Z-2: Ab initio Study of Native Defects Near the Stacking Faults of 3C-SiC
Z-3: Beryllium Segregation to Zr(0001) Surface by First Principles
Z-4: Cluster Dynamics Modeling of Coupling of Cu-rich and Mn-Ni-Si Precipitates in RPV Steels
Z-5: Computational Modeling of the Structure of Jogged Screw Dislocations Responsible for Zircaloy Creep
Z-6: Dislocation Loop Sink Strengths: A 3D Phase-field Modelling Including Realistic Anisotropic Effects
Z-7: Gas Bubble Kinetics in an Irradiated U-Mo Using a Multistate Simulation Approach
Z-8: Phase Field Model of Multiphase Hydrides in Zirconium Fuel Rod Claddings
Z-9: Sensitivity Analysis of Rate Equations and Kinetic Monte Carlo Models

Questions about ProgramMaster? Contact