ProgramMaster Logo
Conference Tools for 2016 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2016 TMS Annual Meeting & Exhibition
Symposium Materials in Clean Power Systems IX: Durability of Materials
Presentation Title Heat Resistant Alloy Development for Fossil Energy Power Generation
Author(s) Jeffrey A. Hawk, Paul D. Jablonski, Gordon R. Holcomb
On-Site Speaker (Planned) Jeffrey A. Hawk
Abstract Scope Alloys used in fossil energy power generation must be stable for extended times with some components having expected lifetimes up to 30 years. As such, any alloy must have a stable microstructure that evolves slowly during its expected life. For temperatures in excess of 600C, advanced 9% Cr steels are used. The 9% Cr steels possess martensitic structure and are strengthened by a variety of mechanisms. Microstructural stability is provided by a 3-dimensional network of carbide that hold together the many structural sub-elements during use. The approach used at NETL to produce heat resistant 9% Cr steels for strength and stability will be discussed with results presented for both wrought and cast forms. In particular, creep capability and the steel’s resistance to corrosion will be discussed and compared against similar results from commercial and developmental 9% Cr steels.
Proceedings Inclusion? Planned: A print-only volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Characterization of Titanium Thin-Film Liquid/Gas Diffusion Layer in Clean and Renewable Power Systems
Computational Modeling of Metal Oxidation
Corrosion Behaviour of 9-12Cr Ferritic Steels and 18-25Cr Austenitic Steels in Supercritical CO2
Corrosion of Energy System Materials in Supercritical Carbon Dioxide (sCO2)
Corrosion of Nickel-base Alloys by Supercritical CO2
Corrosion of Supercritical CO2 Turbomachinary Components
Cyclic Behavior and Fatigue Properties for Haynes 282
Development of Creep Resistant High Cr containing FeCrAl Ferritic Alloys for Fossil Energy Applications
Development of HfB2-ZrB2 Based Ceramics as High Temperature Electrode Materials for MHD Direct Power Extraction System
Effect of Temperature and Pressure on Supercritical CO2 Compatibility of Structural Alloys
Electrodeposition of MCrAlY and Pt-Modified MCrAlY Coatings for Gas-Turbine Engine Applications
Evaluation of the Creep-Rupture Behavior of Haynes Alloy 282 for Advanced Ultrasupercritical Boiler Service
Heat Resistant Alloy Development for Fossil Energy Power Generation
High-Temperature Corrosion of Diffusion Bonded Haynes 230 in Supercritical CO2 Cycle Conditions
High Pressure Steam Oxidation of Boiler and Turbine Alloys
High Temperature Corrosion in Molten Salts & Molten Salts Technology: Past, Present and Future
High Temperature Oxidation and Mechanical Properties of Novel Al-containing Fe-based ODS Alloys
Long-term Microstructural Stability in Haynes 282 after High Temperature Exposure
M-1: Effect of High Temperature Cyclic Oxidation on the Deformation of ODS and Cast FeCrAlY Alloys
M-2: Effect of Mechanical Loading on Galvanic Corrosion Using Electrochemical Characterization Techniques and Depth Profiling
M-3: Electrodeposition of Amorphous/Nanocrystalline Ni–Mo Alloy for Hydrogen Evolution Reaction
M-4: Phyllanthus Muellerianus and Triethanolamine Synergistic Effects on Steel-reinforced Concrete in 0.5 M H2SO4: Implication for Clean Corrosion-protection of Wind-energy Structures in Industrial Environment
Materials Issues for Supercritical CO2 above 700C
Mechanical Characterization of Solid Acid Materials for Intermediate Temperature Fuel Cells
Precipitation Dynamics and the Role of Microstructural Changes in the Development of Alumina-Forming Austenitic Stainless Steels
Weldability of Gradient Tubes for High Temperature Application

Questions about ProgramMaster? Contact programming@programmaster.org