ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments III
Presentation Title Deformation Twinning versus Slip in Ni-based Alloys, Containing Pt2Mo-structured, Ni2Cr-typed Precipitates
Author(s) Hi Vo, Khanh Dang, Fei Teng, Matt Schneider, Benjamin Eftink, Stuart Maloy, Laurent Capolungo, Peter Hosemann
On-Site Speaker (Planned) Hi Vo
Abstract Scope Nickel-based alloys are extensively used in a wide range of extreme environments because of their exceptional mechanical properties. The excellent strength of these alloys is derived from the addition of long-range ordered precipitates, introduced by thermal aging. The interactions between the dislocations and LRO precipitates dictate the deformation modes and plastic response in these alloys. While the majority of studies have focused on L12-structured precipitate-strengthened Ni-based alloys, less work has considered the Ni-based alloys containing Pt2Mo-structured, Ni2(Cr,Mo)-typed precipitates. In these alloys, Pt2Mo-structured precipitates enable room-temperature deformation twinning in addition to slip, which increases strain hardenability measured from bulk mechanical testing. In this work, molecular dynamics examined the possible types of dislocation and Pt2Mo-structured precipitate interactions at low temperature. Combined with in situ micromechanical testing, the role of resolved shear stresses on dislocation partials were shown to directly influence the activation of slip versus twinning.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Advanced In-situ and Post-Irradiation-Examination Thermal Conductivity Measurements of Nuclear Fuels and Materials
Advanced Synchrotron Characterization of Fission and Fusion Energy Materials
Applications of Cryogenic Nanomechanical Testing
Automated In Situ Deformation Characterization via Analytical SEM during High Temperature Tensile Testing
Characterization of Simultaneous High-energy Proton and Spallation-Neutron Radiation Effects in Structural Alloys
Correlating Irradiation Defect Models to Thermal Conductivity Evolution under Irradiation in ThO2
Defect Structure and Property Evolution in Ion-irradiated Tungsten: Progress towards a Comprehensive Understanding
Deformation Twinning versus Slip in Ni-based Alloys, Containing Pt2Mo-structured, Ni2Cr-typed Precipitates
Detection of Radiation Vulnerability in Microelectronic Systems
Dose Rate Dependent Radiation Enhanced Diffusion in Model Oxides
Elucidating Helium Induced Softening in Nanograin Tungsten Through Electron Microscopy Informed Synchrotron X-Ray Scattering
Europium 3+ as a Structural Luminescent Probe in Calcined Ceria Pellets
High-temperature Stable Nanolamellar Transition Metal Carbides Derived from Two-dimensional MXenes for Extreme Environments
Hydrogen Dynamics in Yttrium Hydride Moderator Material
In-situ Thermal Diffusivity Recovery and Defect Annealing Kinetics in Self-ion Implanted Tungsten Using Transient Grating Spectroscopy
In Situ Irradiation of TiO2 Nanotubes
In Situ Monitoring of Heavy Liquid Metal and Molten Salt Corrosion under Irradiation with Proton-induced X-ray Emission (PIXE) Spectroscopy
Machine Learning Algorithms for High-throughput Characterization of Structure and Microstructure of Metals for Extreme Environments
Materials in Extreme Environments Investigated with Positron Spectroscopy
Microstructural Evolution of Alloy 718 under High Temperature In-situ Ion Irradiation with Machine Learning
Neutron Imaging at LANSCE: Characterizing Materials for the Next Generation of Nuclear Reactor Designs
Probing Short-Range Order in Disordered Crystalline Materials for Extreme Environments
Radiation Resistance of Metallic Glass Coatings of Crystalline Nanostructures
Recent Innovations in Machine Learning-based Techniques for In-situ Microscopy Data Analysis
Ring Pull Testing: The Effect of Mandrel Diameter
Thermomechanical Characterization of Advanced Reactor Materials in High Temperature Gas Environments
Three-dimensional Characterization of Multiple Phase Regions within a Neutron Irradiated U-Zr Fuel
Utilizing In-situ Microscopy Techniques to Decipher the Micro-scale Dynamics of Materials in Extreme Environments

Questions about ProgramMaster? Contact programming@programmaster.org