ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Additive Manufacturing and Cellular/Lattice Structures: Designs, Realization and Applications
Presentation Title Fabrication, Microstructure and High Temperature Mechanical Properties of Inconel 718 Lattice Structures Manufactured by Laser Powder Bed Fusion
Author(s) Tae-Hoon Kang, Yongho Sohn, Kee-Ahn Lee
On-Site Speaker (Planned) Tae-Hoon Kang
Abstract Scope Unit cell topology and mechanical properties at room-temperature and 650℃ of additively manufactured IN718 lattice structures were investigated. 12-different lattice structures (BCC, FCC, BCCZ, FCCZ with 2mm, 3mm, 4mm unit-cell sizes; Z means strut designed along the build-direction) were manufactured by laser powder bed fusion process. Solution treatment and standard-aging were also conducted. The relative density of lattice structures were measured 11%~34% according to topology of unit-cell. In standard-aged strut, γ΄, γ΄΄, δ and carbide were observed and analyzed. The characteristic of compressive stress-strain curves followed the general trend of typical lattice structures. However, despite BCCZ has highest relative density, FCCZ shows higher compressive strength in all unit-cell size than BCCZ at RT (FCCZ:180.1MPa, BCCZ:155.7MPa in 2mm unit-cell) and 650℃ (FCCZ:158.5MPa, BCCZ:102.3MPa in 2mm unit-cell). In addition, standard-aged specimens show 20% higher compressive strength on average than as-built. Correlations between structural and microstructural characteristics and deformation behavior were also discussed.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D Printed Fibrous Cellular Multifunctional Structures
A-1: Cytotoxicity of Strontium Calcium Polyphosphate on MC3T3-E1 Cells in 3D Printed Alginate/Collagen Scaffolds
AM-Fabricated Plate Lattice Structures for Impact Applications
Design, Manufacture, Modelling and Testing of Honeycombs with Aperiodic Order
Effect of Geometrical Characteristics on the Mechanical Properties of Co-Cr-Mo Triply Periodic Minimal Surface Lattices Fabricated by Laser-Powder Bed Fusion
Effects of TiB2 in an Al-Cu-Sc Alloy in the Hybrid Investment Casting Process
Enabling Novel Porous Noise Absorbers via Additive Manufacturing
Evaluation of Structural Robustness in Additively Manufactured Lattice Structures
Fabrication, Microstructure and High Temperature Mechanical Properties of Inconel 718 Lattice Structures Manufactured by Laser Powder Bed Fusion
Interlocking Metasurfaces: A Joining Technology for Additive
Laser-based 4D Printing of Ni-Mn-Ga Magnetic Shape Memory Alloys Lattice Structures
Localized Strain, Microstructure, and Property Control of Ti-5553 Lattice Materials
Multi-scale Simulations for Improving the Design of Additive Manufactured Shock Absorbers
Optimized Dissolvable Support Design for 316L Stainless Steel Produced by Laser Powder Bed Fusion
Performance of Titanium Alloy Lattice Structures in Quasi-static and High Strain Rate Environments
Permeable Additive Manufacturing (PermiAM) for Rocketry
Prediction of Mechanical Properties of Ceramic Honeycombs by Polarimetry Measurements of Epoxy Resin Prototypes.
Progressive Nature of Failure of 3D Lattices under Compressive, Shear and Hydrostatic Loads
Specific Energy Absorption of 3D Printed Octet-Truss Lattice Structures with Hollow Struts
Synchronous Involvement of Topology and Microstructure to Design Additively Manufactured Lattice Structure
The Effects of Powder Feedstock and Process Parameter on the Material Characteristics of Ti6Al4V Thin Wall Features Fabricated by Laser Powder Bed Fusion Additive Manufacturing

Questions about ProgramMaster? Contact programming@programmaster.org