ProgramMaster Logo
Conference Tools for 2023 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2023 TMS Annual Meeting & Exhibition
Symposium High Temperature Creep Properties of Advanced Structural Materials
Presentation Title Effect of the Casting Process on the Microstructure and Creep Properties of a Cast Ni-Based Alloy
Author(s) Govindarajan Muralidharan, Jiten Shah, Ram Krishnamurthy, James Myers
On-Site Speaker (Planned) Govindarajan Muralidharan
Abstract Scope Generation 3 Concentrated Solar Power Systems are being targeted for operating temperatures greater than 700°C. Ni-based alloy such as Haynes®282® has the potential to satisfy the high temperature mechanical property requirements but cost and availability are major factors to be considered in its use. Components such as piping, pump and valve bodies can be manufactured at a lower cost using casting processes and hence can be produced on demand. This talk will present the effect of casting processes and part geometry on the microstructure, high temperature tensile and short-term creep properties of Haynes®282® and compare these with that obtained from traditional wrought processing. This work was supported by the US Department of Energy - Solar Energy Technologies Office Concentrating Solar Thermal Power Program. This research was conducted by Oak Ridge National Laboratory, which is managed by UT Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
Proceedings Inclusion? Planned:
Keywords High-Temperature Materials, Computational Materials Science & Engineering, Mechanical Properties

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Microstructure Sensitive Model to Account for the Non-isothermal Creep Behavior of Ni-based Single Crystal Superalloys
CALPHAD Alloy Design for Diffusion-mediated Plasticity-Induced Phase Transformations for Creep Resistant Multicomponent Principal Elemental Alloy
Creep and Creep-ratcheting Behaviour of Selective Laser Melted (SLM) Additively Manufactured (AM) Inconel 718
Creep and Tensile Properties of Five Novel, Computationally Designed Ni-based SX Superalloys
Creep Behavior at Elevated Temperatures of Several Polycristalline Ni-based Superalloys Strengthened by MC-carbides
Creep Behaviors of High-entropy Alloys
Creep Ratcheting of a HP+NbW (MA) Steam Methane Reformer Tube Alloy
Creep Simulations of Refractory High Entropy Alloys
Crystal Plasticity Creep Modeling in Cobalt Based Superalloys
Effect of Alloying Additions on Twinning in Ni-based Superalloys
Effect of the Casting Process on the Microstructure and Creep Properties of a Cast Ni-Based Alloy
F-1: A Study on Microstructure and Mechanical Properties of Fe-Cr-Ni-Al-V Alloys
F-2: Effects of Controlling Ti and Al on Microstructure and Mechanical Properties of Fe-Cr-Co-Al-Ti Ferritic Alloys
F-3: Strengthening Against Creep at Elevated Temperature of HEA Alloys of the CoNiFeMnCr Type Using MC-carbides
Induction of Alternative Shearing Pathways during Creep Deformation of Nickel Based Superalloys via Local Phase Transformation Strengthening
Mechanisms of Creep in Additively Manufactured NiCoCr and ODS-NiCoCr Multi-principal Element Alloys
Role of Cr Content on Creep-rupture Performance in Alumina-forming Austenitic Alloys
The Elevated Temperature Creep, Fatigue, and Fracture Behavior of Nickel-based Superalloys Manufactured by Direct Metal Laser Sintering
Thermal Creep Models Derived from a Comprehensive Multiple Heat 9Cr Tempered Martensitic Steels Database
Threshold Creep Behaviour of Ni-based Superalloy IN740H

Questions about ProgramMaster? Contact programming@programmaster.org