ProgramMaster Logo
Conference Tools for 2017 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2017 TMS Annual Meeting & Exhibition
Symposium Characterization of Materials through High Resolution Coherent Imaging
Presentation Title Biomimetic CaCO3 Complex Morphologies Studied by Coherent X-ray Diffraction Imaging
Author(s) Yuriy Chushkin, Thomas Beuvier, Federico Zontone, Oxana Cherkas, Alain Gibaud
On-Site Speaker (Planned) Yuriy Chushkin
Abstract Scope We present a study of the growth mechanism and self organization processes observed during the formation of biomimetic CaCO3 micro-particles from a liquid solution by using coherent X-ray diffraction imaging (CXDI). Calcium carbonate (CaCO3) can be found in rock minerals and is widely used in industry. Also it is the main constituent of shells of marine organisms. Marine organisms form complex morphologies using CaCO3 and organic macromolecules. Yet little is know how these macromolecules direct precipitation and recrystallization of CaCO3. By analyzing the 3D structures of around 20 samples we could shed light on the pathway leading to the formation of complex morphologies down to the nanometer length scale. In particular, we discuss the role of macromolecules and concentration in the formation of micro-spheres and crystal growth and the connection between micro-particle shape and self-organization of the nano-crystals.
Proceedings Inclusion? Planned: Supplemental Proceedings volume


3D Imaging of High-pressure Induced Deformation Twinning in a Nanocrystal
3D X-ray Imaging of Defect Dynamics in Nanostructured Materials
Anisotropic Growth Patterns in Four Dimensions
Applications of High Resolution Coherent X-Ray Imaging Techniques for Investigating Additively Manufactured Materials
Biological and Bio-inspired Multifunctional Structural Materials
Biological Imaging Using Combined Ptychography and X-ray Fluorescence
Biomimetic CaCO3 Complex Morphologies Studied by Coherent X-ray Diffraction Imaging
Characterizing Evolving Processes through Coupled CDI and Molecular Dynamics Studies
Coherent Diffractive Imaging with Wavelength Spatial Resolution using 13.5nm High Harmonics: Full Field, High-contrast Imaging on a Tabletop
Coherent X-ray Diffraction Measurements of Lattice Distortions Caused by Ion Bombardment
Coherent X-ray Imaging at Future High Brightness Synchrotron Sources
High Resolution Coherent Imaging for Materials
High Speed Tomographic Imaging of Materials during Uniaxial Loading
Imaging Strain Fields by Ptychographic Topography
In-Situ and In-Operando Examination of Structure-Functional Relations in Porous Materials for Energy Conversion and Storage with Nano- and Micro- Synchrotron X-ray Computed Tomography
In-situ Deformation and Damage Assessment in Materials under Dynamic Loading Using High Speed Synchrotron X-ray Phase Contrast Imaging
In-situ Phase Contrast Nano-tomography at ID16B
Nanoscale 4D Microstructural Evolution of Precipitates in Aluminum Alloys Using Transmission X-Ray Microscopy (TXM)
Nanoscale Chemical Imaging of an Individual Catalyst Particle with Soft X-ray Ptychography
Phase Contrast Tomography to Document Gypsum Dehydration in Single Crystals and Polycrystalline Materials
Photoelastic Ptychography: A New Approach for Quantitative Stress Determination
Polychromatic Bragg Coherent X-ray Diffraction Imaging for Rapid Measurements
Progress towards Dichroic Bragg Coherent Diffractive Imaging
Real-time Direct and Diffraction Hard X-ray Imaging of Ultra-fast Processes
Revolutions in Coherent X-ray Sources Will Enable Dynamic Nanometer Scale Strain Imaging in Structural Materials
Soft-X-ray Ptychographic Imaging of Shale
Some Recent Advances in the Theory and Modeling of Phase Contrast Imaging
Speckle-based X-ray Imaging at Diamond Light Source
Unraveling the Structure-function Relationships in Ion Implanted Nanodiamonds
Zernike Phase Contrast for Hard X-ray Microscopy

Questions about ProgramMaster? Contact