ProgramMaster Logo
Conference Tools for Materials Science & Technology 2019
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2019
Symposium Additive Manufacturing: Effective Production, Characterization, and Recycling of Powder Materials
Presentation Title P3-26: Identifying Correlations between Metal Powder Properties and Binder Jet Print Settings to Optimize Process
Author(s) Natalie Wieber, Amy Elliott
On-Site Speaker (Planned) Natalie Wieber
Abstract Scope Binder jet printing is an additive manufacturing process in which a powder feedstock is spread out, a binder agent dispensed in a pattern according to the part design, and more powder spread over the existing layer. This sequence repeats until the height of the part is reached. The printed part is delicate and must be heated to burn out the binder. The part is then sintered to achieve a higher density. The powder feedstock characteristics are critical to the entire process, as particle size and shape affect powder spread and density of green part. The density of the green part and how the particles behave in heat treatment dictate the density, strength, and hardness of the final product. This study compares various materials and particle behavior to printer settings on an ExOne Lab binder jet printer to develop standard printer settings and conclude ideal powder feedstock characteristics.
Proceedings Inclusion? Planned: At-meeting proceedings

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Additive Manufacturing Alloys: Influence of Powder Preparation Method in Aluminum Matrix Composites
Assessment of 316L Stainless Steel Powder Produced from Recycled Machining Chips for Closed Lifecycle Additive-Subtractive Manufacturing
Characterization of Gas Atomized Aluminum Alloy Powder for Additive Manufacturing Applications
Characterization of Nickel-base Superalloy MAR-M247 Powders by Synchrotron X-ray Computed Tomography
Characterization of Titanium Powder Produced from Battlefield Scrap for Additive Manufacturing
Determination of Viscosity of Metal Melts by High Temperature Rheometry
Effects of Recycling PREP and Plasma Atomized Ti-6Al-4V Powder from LENS Process
Exploring the Feasibility of Cryomilled Aluminum Alloy 5083 as Feed Stock Material for Additive Manufacturing
Hydrogen Assisted Magnesiothermic Reduction (HAMR) for Making Low-oxygen Ti Powder
Metal Particulate Produced by Modulation-assisted Machining
P3-26: Identifying Correlations between Metal Powder Properties and Binder Jet Print Settings to Optimize Process
Potentials and Risks in Hybrid Manufacturing
Powder Specification Needs for Steels in the LPBF Process
Surface Area as a Powder Morphology Probe
Synchrotron X-ray CT of AM Feedstock Metal Powder: A Validation of Metallographic Porosity Measurements.
Understanding Powder Morphology and Its Effect on Flowability through Computer Vision and Machine Learning In Additive Manufacturing
Understanding Surface Area Measurement for Improved Powder Characterization

Questions about ProgramMaster? Contact programming@programmaster.org