ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Ceramics for a New Generation of Nuclear Energy Systems and Applications
Presentation Title SiC Oxidation and Irradiation Resistance in Advanced Nuclear Reactor TRISO Fuel
Author(s) Kathy Lu, Yi Je Cho
On-Site Speaker (Planned) Kathy Lu
Abstract Scope Under accidental conditions for high temperature gas-cooled reactors (HTGR), the SiC layer in tri-structural-isotropic (TRISO) fuel particles can be exposed to water vapor. In this study, oxidation behaviors of surrogate TRISO fuel particles were investigated in a He-20 vol% water vapor mixed atmosphere at temperatures up to 1600 °C. Volatilization of the oxide layer was analyzed using a mechanistic model. The prediction indicates that the oxidized SiC layer should retain fission products. In addition, microstructure and defect evolution in the oxidized SiC layer of surrogate TRISO fuel particles under ion irradiation were observed by in-situ transmission electron microscopy. The defect number density at 800 °C was an order of magnitude lower than that in the sample irradiated at room temperature. Also, crystalline SiO2 had higher radiation resistance compared to SiC. A defect reaction rate theory was utilized to understand the fundamental defect evolution process and irradiation resistance difference.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Physics-Based Cluster Dynamics Model of Radiation-Enhanced Growth of Oxides
Additive Manufacturing of Ceramics for Nuclear Applications
Bismuth Loaded Carbon Foam as an Effective Radio Iodine Sorbent
Characterization of Radiation Effects in Ceramics with Spallation Neutron Probes
Characterizing Effects of Aging Bismuth Laden Sorbents in NOx Atmosphere for Radioiodine Capture
Cluster Dynamics Simulations of Point Defects and Fission Gas Evolution in Irradiated Ceramic Nuclear Fuels
Comparison of ZrC-TZM Mechanical and Structural Properties Before and After Extended Carbon Exposure
Corrosion of SiC in Molten Salt and Liquid Lead
Development of Novel TRU-containing Ceramics for Nuclear Waste Immobilization
Environmental Degradation of Ceramic Materials in Nuclear Energy Systems
Fabrication and Properties of Sintered Yttrium Hydride
Integration of Nuclear Fuel and Embedded Sensors within Additively Manufactured SiC Components
J-1: Development and Characterization of Ga/Ta Doped Li7La3Zr2O12 for Direct LiT Electrolysis
J-2: Evaluation of In-Flow Mechanical Robustness of Metal-Functionalized Porous Silica Materials
Microstructural Evolution in Ceramic Nuclear Fuels and their Surrogates under Irradiation
Modeling Vibrational Modes in Raman Spectra of ThO2
Phonon Broadening in High Entropy Ceramic Carbide
Radiation Damage of Ion-irradiated High Entropy Ceramics
Radiation Effects in Single-crystal High-entropy Oxides
SiC Oxidation and Irradiation Resistance in Advanced Nuclear Reactor TRISO Fuel
Single Component Variations in Glass Ceramic Waste Forms
Sulfur Retention of Low Activity Waste Glasses
Synthesis and Characterization of Super Occluded LiCl-KCl in Zeolite-4A as a Chloride Salt Waste Form Intermediate

Questions about ProgramMaster? Contact programming@programmaster.org