ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Mesoscale Phenomena in Functional Polycrystals and Their Nanostructures
Presentation Title Field-assisted Sintering of FeCo/MnZn Ferrite Core-Shell Structured Particles
Author(s) Bowen Dong, Haobo Wang, Matthew A. Willard, Gabriel Santillan, Andrew Sherman
On-Site Speaker (Planned) Matthew A. Willard
Abstract Scope Core-shell FeCo/MnZn ferrite powders were prepared by the sol-gel method with target composition for the MnZn ferrite shell of Mn0.8Zn0.2Fe2O4. The powders were compacted into bulk composites with FeCo separated by an oxide matrix using the field-assisted sintering technique (FAST) at 800°C for 10 min. All resulting compacts achieved relative density >95%. As the MnZn ferrite content in the original core-shell powder increases from 5.01 to 17.10 wt.%, the saturation magnetization of the compacts decreases from 222 Am2/kg to 165 Am2/kg, and the coercivity increases from 772 A/m to 1654 A/m. XRD of the compacts indicates that a chemical reaction dissociates the spinel-structured MnZn ferrite into a rocksalt structured phase. Thermodynamics calculation indicates that the reaction happens between FeCo and MnZn ferrite at 800°C, but favors MnZn ferrite at temperatures 400°C. This prediction was substantiated by FAST consolidation at 400°C. (Supported by NASA SBIR under Contract Number 80NSSC19C0358)

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A New Carbon Solid: Layered Amorphous Graphene — Its Structure, Cohesion and Space-projected Conductivity
Aerosol Deposition and Characterization of Complex Oxide Systems
Conduction in Aluminum with Graphite and Graphene Additives
Coupled Multiferroic Phase Field Models for BiFeO3: Domain Topologies and Order Parameter Dynamics
D-20: Asymmetric Tribology of Symmetric Polarization
D-21: Machine-learned Large-scale Model for Layered Amorphous Graphene: A Study of Its Structure and Thermodynamics
D-22: Mesoscale Modeling of Domain Wall Behavior in Perovskite Ferroelectrics
Fabrication and Properties of Multi-scale Architected Materials
Field-assisted Sintering of FeCo/MnZn Ferrite Core-Shell Structured Particles
From Nanoparticles to Nanocrystalline Solids with New Functionalities: Thermoelectrics as a Case Study
Mesoscale Magnetic Imaging of Functional Materials
Micro/Nanostructure Effects on Thermal Conductivity and Optical Light Transmission—Designing High Performance Laser Ceramics
Modeling the Relaxor Dielectric Dispersion of Ba(1−x)Sr(x)TiO3 with a Local Phase Field Method
Modeling Thermoelectric Properties of Polycrystalline Materials at Mesoscale
Optimization of Metal/Ferroelectric/Insulator/Semiconductor Capacitor Toward Reliable Gate Stacks of Field-effect-transistors
Polycrystal-inspired Stochastic Mechanical Modeling of Complex, Heterogeneous Porous Microstructures
Strain-induced Novel Quantum and Ionic Phenomena in Oxide Heterostructures
Structure, Charge Distribution and Electronic Transport Mechanism in Layered Amorphous Graphene
Supercrystals as Hybrid Nanostructured Materials with Tailored Mechanical and Magnetic Properties
Synthesis, Processing, and Properties of High Performance Lead Free Electro-optic Ceramics

Questions about ProgramMaster? Contact programming@programmaster.org