ProgramMaster Logo
Conference Tools for 2018 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2018 TMS Annual Meeting & Exhibition
Symposium Accident Tolerant Fuels for Light Water Reactor
Presentation Title Thermal Aging Embrittlement in a Friction Stir Processed Al-bearing, High-Cr Stainless Steel
Author(s) Anumat Sittiho, Vedavyas Tungala, Aniket Dutt, Peyman Samimi, Somayeh Pasebani, Indrajit Charit, Rajiv S. Mishra
On-Site Speaker (Planned) Anumat Sittiho
Abstract Scope Kanthal APMT, an Al-bearing, high-Cr ferritic stainless steel, has potential as an accident-tolerant cladding material for advanced light water reactors. However, high-Cr ferritic steels suffer from thermal aging embrittlement. In this study, friction stir processing (FSP) was applied to a hot-rolled APMT plate. Isothermal aging of both the parent and the FSPed specimens were carried out at 748 K for 2-1500 hours to study the associated mechanical and microstructural changes due to aging. The microstructural characteristics of APMT steel both before and after thermal aging were examined by different analytical characterization tools including high resolution transmission electron microscopy and atom probe tomography. Mechanical properties of the specimens were evaluated by Vickers microhardness and tensile testing. The response to thermal aging embrittlement effect in the FSPed material is found to be slower than that of the parent material because of the difference in the size and morphology of alpha-prime phases formed.
Proceedings Inclusion? Planned: Supplemental Proceedings volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

AREVA NP’s Evolutionary Solution for Enhanced Accident Tolerant Fuel
Atomic to Mesoscale Research and Development for U3Si2 Accident Tolerant Fuel
Calculating Swelling in U3Si2 Nuclear Fuel Using a Multi-scale Computational Approach
Corrosion Products of FeCrAl Alloys in Simulated LWR Environments during In-situ Proton Corrosion-irradiation Experiment
Crystallographic and Chemical Instabilities of MAX Phases during Proton Irradiation
Density Functional Theory Study of Behavior of Selected Accident Tolerant Nuclear Fuels
Development of Alumina-forming Duplex Stainless Steels as Potential ATF Cladding Materials: Preliminary Assessments of High Temperature Steam Corrosion Behavior and Tensile Property
Development of Cold Spray Coatings for Accident Tolerant Fuel (ATF) Cladding
Effect of Dynamic Strain Aging on Mechanical Properties of Zircaloy-4
Effects of Ce Addition on the Microstructure and Mechanical Properties of Accident-tolerance Fe-Cr-Al Fuel Cladding Materials
Enhanced Accident Tolerant Zirconium-silicide Coated LWR Fuel Cladding
Ex-situ and In-situ Determination of α' Phase Formation/Dissolution in High-Cr Ferritic Alloys Using Small-angle Neutron Scattering
Experimental Characterization of Micro-scale Failure Mechanisms and Governing Properties in SiC/SiC Composites
Gaseous Fission Product Swelling Behavior in U3Si2 Fuel
High Temperature Oxidation Behavior of Zirconium Silicides and their Coating by Laser Cladding on the Zircaloy-4 Tube
Impact Toughness of Model and Commercial FeCrAl Alloys
Improvements to TRISO Based FCM Fuel Performance Modeling
In Situ Ion Irradiation of Multilayer (TiN, TiAlN) Ceramic Coating for Accident Tolerant Zr-alloy Fuel Claddings
Investigation of Additives, Sol-gel Process Variables, and HIP Parameters on the Density UN Microspheres
Laser Based Characterization of Microstructure and Thermal Properties in Nuclear Fuel Materials
Linking Advanced Multi-scale Modeling with Engineering Scale Fuel Performance Assessments of Accident Tolerant Fuels
Microstructure Characterization of U3Si2 Irradiated by High-energy Ions at LWR Temperatures
Microstructure Studies of Interdiffusion Behavior of U3Si2 and SiC
Mitigation of Oxidation of Zircaloy Cladding in High Temperature Steam via Cr and CrAl Coatings
Modeling Radiation Defect Cluster Accumulation in Neutron Irradiated FeCrAl
Molecular Dynamics Investigation of Interfaces in U3Si2
Multilayer Metal-ceramic Coatings for Accident Tolerant Fuel
New Zr-based MAX Phases as Accident Tolerant Fuel Cladding
ODS FeCrAl Fabrication Methodology for Optimizing Ductility and Sink Strength
Optimization of Process Parameters for Thin-wall Tube Fabrication of FeCrAl Alloys
Oxidation Behavior of FeCrAl Alloys at T= 300-600C for 100-1000 Hours
PCI Analysis of Coated Zircaloy Cladding under LWR Steady State and Startup Operations
Postirradiation of Accident Tolerant Fuel Concepts: Techniques, Highlights and Future Plans
Quality Optimization of Seamless Thin-wall Tube Production of ATF Wrought FeCrAl Alloys
Quantitative Characterization of Y and Ti Inclusions in a 14Cr-YWTi Nanostructured Ferritic Alloy and their Effect on High Temperature Fracture
Radiation Effects on SiC/SiC Composites for Advanced Accident Tolerant Fuel Cladding Tubes
Rate Theory Simulation of Fission Gas Behavior in U3Si2 under LWR Conditions
Relationship Between Reactive Element Particle Dispersions and Irradiation-induced Defects in Neutron Irradiated Commercial APMT Alloy
Simulation of Iron-chrome-aluminum Alloy Cladding under LOCA Conditions Using the BISON Fuel Performance Code
Simulation of SiC-SiC Composite Micro-pillar Compression as an Investigation of Fiber/Matrix Interface Properties
Spark Plasma Sintering and Microstructural Analysis of Pure and Mo Doped U3Si2 Pellets
Status of Accident Tolerant Fuel Cladding Development for LWRs
Status Update on Westinghouse EnCoreTM ATF
Steam Oxidation and Heavy Ion Irradiation Behaviors of Ti2AlC Ceramics
The Department of Energy Advanced Nuclear Fuels Campaign
The Microstructure and Fission Product Behavior in Irradiated AGR TRISO Fuel Particles
Thermal Aging Embrittlement in a Friction Stir Processed Al-bearing, High-Cr Stainless Steel
Thermal Conductivity of SiC Fiber-reinforced Composites for Accident Tolerant Fuel by the Finite Element Method
Thermal Conductivity of Uranium
Transient Swelling of SiC/SiC Composites and its Implications to Fuels and Core Designs
UB2 as Advanced Nuclear Fuel: Modelling In-reactor Evolution of Thermo-physical and Chemical Properties
Uranium Silicide Behavior in Reactor Relevant Atmospheres
ZrSiO4 as an Efficient Barrier Coating for Nuclear Applications

Questions about ProgramMaster? Contact programming@programmaster.org