ProgramMaster Logo
Conference Tools for 2017 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2017 TMS Annual Meeting & Exhibition
Symposium Computational Approaches to Materials for Energy Applications
Presentation Title Monte Carlo Modeling of Phonon Transport in Nanostructures
Author(s) David Lacroix
On-Site Speaker (Planned) David Lacroix
Abstract Scope Monte Carlo (MC) modeling has proven to be an accurate and efficient technique to deal with many physics, chemistry and engineering problems. It has successfully adapted to solve the Boltzmann Transport Equation for phonons. In the latter case, heat propagation in nanostructured materials like nanofilms, nanowires or phononic crystals can be addressed accurately. With this technique, thermal conductivity, Kapitza resistance and thermal conductance can be appraised as long as phonon dispersions and relaxation times are known. This is the case for major semiconducting materials but becomes no longer true with complex compounds where such data are unavailable or partial. To answer this challenge we propose a new multiscale approach which joins DFT calculations to MC modeling. Using ab-initio techniques accurate material bulk phonon properties can be appraised. They are the input of an improved MC tool which is used to model the thermal properties of nanostructures made of complex compounds.
Proceedings Inclusion? Undecided

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Ab Initio Calculations of Carrier Radiative Lifetimes
Accelerated Discovery of Novel Low-thermal-conductivity Crystals by First-principles Data-driven Approach
Design of Heteroepitaxialy Grown Quantum Dots Under External Force Fields
Different Aspects of Disorder in Materials for Energy Conversion Studied by the KKR-CPA Calculation
Energy Landscape of Point Defects in Body-centered-cubic Metals
First Principles Calculations of the Stability and Physical Properties of Thermoelectric Materials
Monte Carlo Modeling of Phonon Transport in Nanostructures
Optimizing Materials for Solar Energy Conversion: In Search for Descriptors
Structure Prediction in Novel Energy Materials Design
Systematic Search for Lithium Ion Conducting Compounds by Screening of Compositions Combined with Atomistic Simulation
Tuning Thermal Conductivity of Metal-Organic–Frameworks
Visual Search Strategies for Thermoelectrics

Questions about ProgramMaster? Contact programming@programmaster.org