ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Ceramics for a New Generation of Nuclear Energy Systems and Applications
Presentation Title Characterization of Radiation Effects in Ceramics with Spallation Neutron Probes
Author(s) Maik K. Lang
On-Site Speaker (Planned) Maik K. Lang
Abstract Scope The development of durable materials for radionuclide immobilization has been central to efforts to dispose of nuclear wastes. There still exist, however, large gaps in the understanding of waste form degradation under self-irradiation. Neutron total scattering measurements with pair distribution function analysis can be utilized to uniquely characterize radiation effects in a wide range of wasteform materials. This enables detailed analysis of both cation and anion defect behavior, and short-range order, which is important for the investigation of amorphous materials. Recent results for several oxides demonstrate that radiation effects are more complex than previously thought with distinct processes occurring over different length scales. For example, disordered pyrochlore and spinel are composed of local structural units that maintain atomic order and exist in configurations that are different than the expected average structure. Here we will highlight the importance of short- and medium-range analysis for a comprehensive description of radiation behavior.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Physics-Based Cluster Dynamics Model of Radiation-Enhanced Growth of Oxides
Additive Manufacturing of Ceramics for Nuclear Applications
Bismuth Loaded Carbon Foam as an Effective Radio Iodine Sorbent
Characterization of Radiation Effects in Ceramics with Spallation Neutron Probes
Characterizing Effects of Aging Bismuth Laden Sorbents in NOx Atmosphere for Radioiodine Capture
Cluster Dynamics Simulations of Point Defects and Fission Gas Evolution in Irradiated Ceramic Nuclear Fuels
Comparison of ZrC-TZM Mechanical and Structural Properties Before and After Extended Carbon Exposure
Corrosion of SiC in Molten Salt and Liquid Lead
Development of Novel TRU-containing Ceramics for Nuclear Waste Immobilization
Environmental Degradation of Ceramic Materials in Nuclear Energy Systems
Fabrication and Properties of Sintered Yttrium Hydride
Integration of Nuclear Fuel and Embedded Sensors within Additively Manufactured SiC Components
J-1: Development and Characterization of Ga/Ta Doped Li7La3Zr2O12 for Direct LiT Electrolysis
J-2: Evaluation of In-Flow Mechanical Robustness of Metal-Functionalized Porous Silica Materials
Microstructural Evolution in Ceramic Nuclear Fuels and their Surrogates under Irradiation
Modeling Vibrational Modes in Raman Spectra of ThO2
Phonon Broadening in High Entropy Ceramic Carbide
Radiation Damage of Ion-irradiated High Entropy Ceramics
Radiation Effects in Single-crystal High-entropy Oxides
SiC Oxidation and Irradiation Resistance in Advanced Nuclear Reactor TRISO Fuel
Single Component Variations in Glass Ceramic Waste Forms
Sulfur Retention of Low Activity Waste Glasses
Synthesis and Characterization of Super Occluded LiCl-KCl in Zeolite-4A as a Chloride Salt Waste Form Intermediate

Questions about ProgramMaster? Contact programming@programmaster.org