ProgramMaster Logo
Conference Tools for 2016 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2016 TMS Annual Meeting & Exhibition
Symposium Computational Materials Discovery and Optimization: From 2D to Bulk Materials
Presentation Title Proving the Exact Ground State of a Generalized Ising Model by Convex Optimization and MAX-SAT
Author(s) Wenxuan Huang, Daniil Kitchaev, Stephen Dacek, Ziqin Rong, Alexander Urban, Alexander Toumar, Shan Cao, Chuan Luo, Gerbrand Ceder
On-Site Speaker (Planned) Wenxuan Huang
Abstract Scope We present an algorithm to find exact ground states of lattice models, a fundamental problem in condensed matter and materials theory. The algorithm not only finds the ground state but also proves that it is an absolute minimum. Combinatorial optimization (MAX-SAT) and non-smooth convex optimization (MAX-MIN) are combined to provide upper and lower bounds respectively on the ground state energy. By systematically converging upper and lower bounds to each other, we find and prove the exact ground state for realistic Hamiltonians whose solutions are otherwise intractable via traditional methods. Our algorithm is the first general and scalable method for finding provable global energy minima of lattice Hamiltonians. Considering that currently such Hamiltonians are solved using simulated annealing and genetic algorithms that are often unable to find the true global energy minimum, our work opens the door to resolving long-standing uncertainties in lattice models of physical phenomena.
Proceedings Inclusion? Planned: A print-only volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Differential-Exponential Hardening Model for Crystal Plasticity Modeling of Single Crystals
A Fast Algorithm for the Discovery of Optimal Nickel-based Superalloys
A General-Purpose Toolkit for Predicting the Properties of Materials using Machine Learning
A Machine Learning Approach to Bulk Property Prediction for the Laser Assisted Cold Spray Process
Applying Graph Kernels to the Transgranular Network for Microstructure Data Mining
Atomistic Modeling of Structure-Property Relationships in Grain Boundaries
Combined DFT, MD and Hybrid MD/FEM Simulations to Investigate Realistic Mechanical Deformations during Nanoindentation
Computational Discovery of New 2D and 3D Topological Materials
Computational Discovery of Novel Magnetic 2D Materials
Computational Discovery of Novel Single-Layer Group-IV Oxides with an Evolutionary Algorithm
Computational Exploration of Rare-earth Zirconate Pyrochlores for Thermal Barrier Coatings: Accurate Prediction of Thermal Conductivities and Thermal Expansion Coefficients from First-principles Calculations
Developing Physically-based Three Dimensional Microstructures: Bridging Phase Field and Crystal Plasticity Models
Effect of Charge on Point Defect Size Misfits from Ab Initio: Aliovalently Doped SrTiO3
Electronic Structures of Ferromagnetic Fe1-xTMxPt Alloys (TM = Mn, Fe, Co, Ni, Cu)
Exploring the Structure-composition Design Space in Multi-component Alloy Systems Using Nature Inspired Optimization Algorithms
Fatigue Crack Growth Modeling and Microstructural Mechanisms in Engine Materials under Hot Compressive Dwell Conditions
First Principles Investigation On TiAl3 Alloys Substitutively Doped With Si
H-1: A Theoretical Study on the Origin of Mg-based LPSO Structures
H-2: First Principle Study of Nonlinear Elastic Mechanical Responses of Two-dimensional Stanene
High-Throughput Screening of Substrates for Synthesis and Functionalization of Two-Dimensional Materials
Hydrogen-induced Core Structures Change of Screw and Edge Dislocations in Tungsten
Lithiation Kinetics of Crystalline Silicon Nanowires Regulated by Native Oxide Layer: A Molecular Dynamics Simulation Using ReaxFF.
Machine Learning in Chemical Space
Microstructural Evolution of High Temperature Ni-Cr ODS Alloy: Genetic Algorithm Approach
Modeling the Hydroforming of a Large Grain Niobium Tube
Monte Carlo Simulation of Two-phase Film Growth on a Patterned Substrate
Multi Scale Modeling of Deformation Behavior in Near Beta Ti-5553 Alloy
Prediction of Entropy Stabilized Incommensurate Phases in the System MoS_2-MoTe_2
Proving the Exact Ground State of a Generalized Ising Model by Convex Optimization and MAX-SAT
ReaxFF Force Field Development and Simulations of Two Classes of 2-Dimensional Structures: MoS2 and MXenes
Stability of Combined Depositions of Graphene and Gallium Nitride on Silicon Carbide: Interfacial Energies and Phonons
Three-Dimensional Simulation of Intercalation-Induced Stress in LiCoO2 Cathode Reconstructed by Focused Ion Beam Tomography
Turbostratically Disordered Compounds as a Template for Computational Materials Discovery

Questions about ProgramMaster? Contact programming@programmaster.org