ProgramMaster Logo
Conference Tools for 2018 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2018 TMS Annual Meeting & Exhibition
Symposium Computational Method and Experimental Approaches for Model Development and Validation, Uncertainty Quantification, and Stochastic Predictions
Presentation Title Development of a Semi-empirical Potential for Simulation of Ni Solutes Segregated in Ag Grain Boundaries
Author(s) Mikhail Mendelev, Valery Borovikov, Zhiliang Pan, Frederic Sansoz
On-Site Speaker (Planned) Mikhail Mendelev
Abstract Scope A Finnis-Sinclair (FS) potential designed to simulate the effect of Ni solutes on the dislocation nucleation from the grain boundaries in Ag will be presented. This potential includes a new Ag potential developed to correctly reproduce the stable and unstable stacking fault energies while a Ni potential was taken from literature. A method to normalize the FS density cross-function using the difference between the cohesive and unrelaxed vacancy formation energies will be presented. To properly incorporate the interatomic interaction at small Ag-Ni atomic separations, the potential development procedure also included fitting to the ab initio data on the liquid structure of the Ag80Ni20 alloy. The challenges associated with positive deviations from ideality in this alloy will be discussed. Finally, the potential was also fit to the values of the 9 <110> grain boundary (GB) energy and the segregation energies at different sites within this GB obtained from ab initio calculations.
Proceedings Inclusion? Planned: Supplemental Proceedings volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Bayesian Linear Regression and Kriging Methods for Uncertainty Quantification in Process-structure-property Linkages of Low Carbon Steels and Superalloys
Benchmarking Density Functional Theory Based Methods to Predict Optical and Electronics Properties of 2H-TaX2 (X=S, Se)
Calibration of a Titanium Modified Embedded Atom Method Potential to High Temperature Behavior
Correlations of Numerical Precision in Material Properties Derived from Density Functional Theory
Development of a Semi-empirical Potential for Simulation of Ni Solutes Segregated in Ag Grain Boundaries
Dynamic Failure of High Energy Materials: Uncertainty Quantification and Stochastic Predictions
Errors of Molecular Dynamics Simulations, and Development of “Accurate” Analytical Bond Order Potentials for Al-Cu-H and Mg-H Systems
Extending the Angular-embedded Atom Method (A-EAM) Framework to an Al-Mg-Si Ternary System
Extending the Reach of DFT to Molecular Simulations Using Neural Networks
It's a SNAP: Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Large Scale Sensitivity of Uncertain Parameters on Optimal Control Solutions: An Example in Additive Manufacturing
Lattice Thermal Conductivity: Uncertainty Quantification in First Principles Predictions and Experimental Validation
Linear Scaling, Quantum-accurate Interatomic Potentials with SNAP; Reaching those Hard-to-reach Places in Classical Molecular Dynamics
Machine Learning Based Atomistic Force Fields
Machine Learning Methods for Interatomic Potentials: Application to Boron Carbide
Machine Learnt Interatomic Potentials for Stanene and Germanene to Study Thermal Conductivity and Growth
New Advances in Semi-empirical Interatomic Potentials - the Modified Embedded Atom Method (MEAM)
Overcoming Singularities within Rate-independent Crystal Plasticity to Enable Realistic Latent Hardening
Parametrically Homogenized Models of Deformation and Failure of Metals and Alloys with Uncertainty-quantification
Property Localization: Quantifying the Uncertainty of Inferred Constitutive Models for Grain Boundaries
The Current State of Phase Field Benchmark Problems Developed by CHiMaD/NIST
The OpenKIM Testing Framework for Interatomic Potentials
The Role of Data Analysis in Uncertainty Quantification: Examples from Materials Science
Uncertainty Quantification for Additive Manufacturing Applications across Scales
Uncertainty Quantification for Solute Transport Modeling
Uncertainty Quantification in Materials Strength Models Using Bayesian Inference
Uncertainty Quantification of the Effect of Charge Noise on Silicon Quantum Dots
Utilizing Error in First-principle Lattice Constants to Discover Novel Low-dimensional Materials

Questions about ProgramMaster? Contact programming@programmaster.org